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a b s t r a c t

This review covers the application of backscattering imaging as a non-invasive technique for monitoring
the quality of agricultural and food products. The review enumerates and discusses the concepts and
various applications of laser light backscattering imaging (LLBI), multispectral laser backscattering im-
aging (MBI) and hyperspectral laser backscattering imaging (HBI). All the methods make use of laser light
which varies in spectrum from visible up to near-infrared to detect changes in the quality of fresh
produce. Emphasis is placed on applications which demonstrate promising potential for agricultural and
food applications under various conditions. A critical review of the limitations is also given.
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1. Introduction

The increasing demand for agricultural and food commodities
has brought about the adoption of automation and modern tech-
niques to increase the rate of production, improve quality assess-
ment and reduce waste. The increasing rate of international trade
has imposed a high-level of standardisation in terms of quality and
im).
safety of these commodities among the countries involved
(Greensill and Newman, 1999). The various handling stages and
processes to which these commodities are subjected, including
environmental conditions, affects their quality. It is therefore
important to monitor and control the quality of these commodities
to ensure that they adhere to a defined set of quality criteria or to
meet consumer requirements (Ruiz-Altisent et al., 2010).

The quality index of agricultural and food commodities com-
prises attributes which facilitate their acceptance or rejection by
the consumer (Singhal et al., 1997). Choi et al. (2006) reported the
use of appearance, texture, nutritional content, flavour, and defects
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as five major attributes to assess the quality of fresh produce. Many
reference techniques have been developed to investigate produce
quality. Most of the techniques are subjective and destructive.
Hence measurements usually are time consuming, lack consistency
and often lead to waste. Thus, efforts have been made in recent
years which focus on developing non-destructive techniques to
overcome the stated problems (Mollazade et al., 2012).

Non-destructive optical-based techniques have shown high ca-
pacity in assessing the quality of agro-food commodities. Some of
these methods can be used with high precision to monitor the
quality attributes of agricultural and food commodities. This is
achieved by an effective combination of sensors, mathematical
models and algorithms to determine the relationships which exist
between the quality traits of the commodity and the observed
physical or chemical properties of the commodity (Ruiz-Altisent
et al., 2010). Spectroscopy and imaging are two major optical
techniques that have found application in quality and safety in-
spection of agricultural and food commodities (Du and Sun, 2004;
Kumar andMittal, 2010; Mizrach et al., 2009; Pallottino et al., 2010;
Schlüter et al., 2009; Shankar et al., 2010; Singh et al., 2010).

Spectral imaging techniques acquire thousands of spectra per
sample. A recent development includes hyperspectral, multispec-
tral and laser light backscattering imaging. Based on the light
source and the imaging unit used, the technique is divided into
three categories, namely laser light (monochromatic) backscat-
tering imaging (LLBI), multispectral backscattering imaging (MBI)
and hyperspectral backscattering imaging (HBI). The images ac-
quired by these categories are similar when a certain wavelength is
selected (Mollazade et al., 2012). Therefore, this paper discusses
different backscattering imaging technologies with emphasis on
the application of emerging technologies i.e. LLBI, MBI and HBI.
2. Concept of light backscattering imaging

An object or a body may be transparent, semi-transparent or
opaque in terms of the passage of light through it. Agricultural
and food commodities are presumed to be semi-transparent or
opaque and allow the passage of light at specific wavelengths
(Mireei et al., 2010). Absorption, transmittance and reflectance
may take place when light photons, or electromagnetic radiation,
moves within a semi-transparent or opaque biological system
(Qin, 2007). Light reflectance is an intricate phenomenon and
can be looked at as steady (specular) reflectance, external diffuse
reflectance, and scattering. Light reflection from a polished and
smooth surface is called steady (specular) reflectance. The law of
reflection proposes that the angle of incidence of light with the
surface of a body is equal to the angle at which it is reflected,
while external diffuse reflectance takes place at a fixed angle of
45� to the incident beam. This reflectance conveys certain in-
formation about the surface of the object such as colour and
texture (Mireei et al., 2010).

Birth (1976) reported that for agricultural products, only 4%e5%
of incident light is reflected by both steady (specular) and external
diffuse reflectance. The rest of the light is transmitted through the
skin tissue and is scattered through the permeable tissue of the
internal components of the fruit or vegetable. The majority of the
light travelling through the tissue is reflected by the internal
components of the biological material and is dispersed towards the
external tissue surface. As the backscattered photons have inher-
ently interacted with the internal components of the tissue, these
photons may provide some information about the structures and
morphology of the tissues, and their mechanical properties etc.
(Mollazade et al., 2012) as well as the water content (Romano et al.,
2011; Hashim et al., 2013).
Scattering is a natural phenomenon of light that is related to cell
size and the inter- and extra-cellular properties of the tissue
matrices (Lu, 2004). Photons penetrating the surfacewill be initially
refracted, obeying Snellius' law, i.e. photons entering a body with a
higher refractive index are refracted towards the vertical axis to the
surface (Steiner, 2011). Mathematically Snellius’ law states:

Sinqi
Sinqr

¼ n (1)

where n is the refractive index, and qi and qr are the incident and
refraction angles respectively.

Inside the object, the photons may undergo scattering. That is,
they experience a change in direction of movement according to a
probability function expressed as the anisotropy factor, g, or ab-
sorption, meaning the excitation of the absorbing molecule by an
electronic transition such as the Henyey-Greenstein phase function
which is given as:

Pðcos qÞ ¼ 1
2

1� g2�
1þ g2 � 2g cos q

�3=2 (2)

where g is the anisotropy factor (0e1) and q is the polar scattering.
When g ¼ 0, this represents isotropic scattering and when g ¼ 1,

this represents forward scattering. The HenyeyeGreenstein phase
function simulates scattering functions which have been observed
experimentally in biological tissue (Henyey and Greenstein, 1941;
Jacques, 1998). McGlone et al. (1998) stated that the cell wall sur-
faces are the most predominant cause of the backscattering phe-
nomenon because they give rise to abrupt changes in the refractive
index within fruit and vegetables. Tissue starch, chloroplasts, and
mitochondria are also responsible for scattering as a result of
refraction at their surfaces (Nicolaï et al., 2007). The structural
components of agricultural and food commodities can take up a
particular amount of light. Photon absorption or scattering is a
function of the types of structural components of the product, the
light wavelength, and light path length. Therefore, light absorption
and scattering properties can be used to group biological tissues
since light absorption and scattering properties are material spe-
cific (Mireei et al., 2010).

HBI provides a substantial amount of information concerning
the physical and chemical composition of an imaged object.
Schaepman (2007) defined HBI as the simultaneous acquisition of
spatial images in many spectrally contiguous bands measured from
a remotely operated platform. HBI consists of both hardware and
software, although the specific configuration may differ based on
the object to be evaluated and themethod of image acquisition. The
common basic components of HBI include an illumination source to
provide light, a detector which simultaneously acquires spectral
and spatial resolution, a spectrograph, an objective lens, an objec-
tive table fixed to a conveyor belt to hold and convey the samples
and a computer to create and store the acquired images (Fig. 1). An
example of the acquired images is shown in Fig. 2. In contrast, MBI
systems usually record less than ten bands. Therefore, they do not
render a real spectrum in every image pixel (Ariana and Lu, 2010).

A LLBI system mainly comprises of a charge-coupled device
(CCD) camera, a few laser diodes of different wavelengths which
can be used interchangeably as a light source, as well as a computer
to operate the camera and to capture the images, and store the data.
After light has penetrated the object, the camera records a fraction
of the backscattered light and transfers the data to the computer.
An example of a LLBI image is shown in Fig. 3a, while the image
profiles are shown in Fig. 3b and c. It can be seen that the intensity
of the light decreases as the radius of the light spot increases. These



Fig. 1. Hyperspectral imaging system for acquiring spatially resolved scattering images from a fruit sample (Qin and Lu, 2008).
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changes can be related to the interaction of the light with the
quality attributes of agricultural and food commodities.

The application of backscattering imaging has been tested on
several temperate crops such as tomatoes, apples and plums as well
as some vegetables and foods. A summary of applications of back-
scattering imaging for agricultural and food products is as shown in
Table 1.

3. Potential of backscattering imaging in agricultural and
food processing

3.1. Applications of laser light backscattering imaging (LLBI)

It is known from studies that LLBI has been used to determine
soluble solids content (SSC) and firmness. SSC and firmness have
been linked with maturity or the level of ripeness and the shelf life
of fruits and vegetables. SSC is known to increase as maturity
Fig. 2. (a) Scanning line and scattering area; (b) Raw hy
progresses while flesh firmness in fruit decreases with increasing
maturity. Various researchers have used LLBI to predict SSC and
firmness in fruits and vegetables (Qing et al., 2008; Tu et al., 2006,
2000) and the outcome from these works has been remarkable. For
example Qing et al. (2008) applied LLBI to assess the soluble solids
content (SSC) and firmness of apples grown in different locations
and at different stages of development. In the study, spectral im-
ages of Elstar and Pinova apples were captured with laser diodes
emitting at five wavelengths (680, 780, 880, 940, and 980 nm) with
a 10 nm bandpass, to assess fruit absorption and scattering prop-
erties. Different multivariate calibrations including partial least
square regression (PLSR), stepwise multi-linear regression (SMLR),
and principal component regression (PCR) were used as statistical
analysis methods. The result revealed that a prediction of SSC and
firmness of apples at different developmental stages and environ-
mental growing conditions can be achieved using the five wave-
lengths. There was a positive correlation between SSC and the
perspectral scattering image (Peng and Lu, 2008).



Fig. 3. Typical backscattering image and profiles of banana before storage (a) raw
backscattering image (b) backscattering profile at 660 nm (c) backscattering profile at
785 nm (Hashim et al., 2013).
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frequency of intensities, while a negative correlation was noticed
between flesh firmness and frequency of intensities which was
used to predict SSC and firmness of the apples. With correlation
coefficient (R) values of 0.83 for SSC and 0.87 for firmness, it
showed satisfactory prediction accuracy.

LLBI has also been used to monitor changes in drying parame-
ters in fruits such as apple and banana (Romano et al., 2008, 2011).
Moisture content, which is one of the major factors that determine
shelf-life, must be carefullymonitored to achieve effective drying. It
has been reported that at lower temperatures there is a better
correlation between backscattering parameters and moisture
content. Romano et al. (2008) investigated the use of a LLBI system
to monitor the changes in banana slices during drying. In their
study, a 670 nm wavelength laser diode was employed as a light
source and a CCD camera as a detector. The size of the total illu-
minated area in square centimetres and the radius in centimetres
were measured to determine photon migration into the tissue. The
banana samples were skinned and cut into slices of 2.5e3.0 cm
diameter with 1.0e1.3 cm thickness. The slices were weighed and
oven dried in a standard oven using three different temperatures
(53 �C, 58 �C and 63 �C). Backscattering images of the banana slices
were taken every hour during the drying process. The authors
found that there was a selective response of two parameters,
namely the area and radius of the intensity profile to the changes in
moisture content. The LLBI parameters and the moisture content at
the lowest temperature (53 �C) showed high correlations
(R2 ¼ 0.85) between the normalised values and the classification
results. The movement of the radius located by the inflection point
migrating closer to the incident point with the decrease in the
moisture content as drying time and temperature increased.

LLBI has further been used to determine defects in fruits and
vegetables such as rot in citrus and chilling injury in banana
(Hashim et al., 2013; Lorente et al., 2013). Defects in fruits and
vegetables have been reported as not only reducing their market
value, but also resulted in total rejection by consumers and
consequently gave rise to greater waste. Therefore early detection
of defects in fruits and vegetables is highly desirable. For instance,
Lorente et al. (2013) investigated the detection of rot in citrus by
five laser diodes which emitted light from visible to the near
infrared range. Half of the samples were inoculated with spores of
the fungus Penicillium digitatum and the other half were inoculated
with water to serve as control samples. Five images were obtained
from each fruit giving a total of 500 images for the whole study set.
The GaussianeLorentzian (GL) function was used to describe the
backscattering profiles since the images obtained had radial sym-
metry regarding the incidence point of the laser light. Linear
discriminant analysis (LDA) was used as a classification model and
the study achieved 80.4% detection accuracy at 532 nm while
combinations of five wavelengths gave 96.1% detection accuracy.
With an average coefficient of determination R2 of 0.998, it shows
that LLBI could be an efficient means to detect and predict defects
in fruit and vegetables.

LLBI has been applied in the determination of the mechanical
properties of some horticultural crops such as apple, plum, tomato
andmushroom (Mollazade et al., 2013). Mechanical properties such
as elastic modulus and firmness are influenced by maturity and
time of harvest. They also aid in the evaluation and grading of fruits
and vegetables. Mollazade et al. (2013) investigated the feasibility
of texture-based models and the coefficients from space-domain
analysis of LLBI to develop models for predicting the mechanical
properties (firmness or elastic modulus) of several horticultural
crops. In the study, 127 images of apples, 350 images of plums, 200
images of tomatoes and 200 images of mushrooms were acquired
using laser light at 660 nm. A calibration model to predict firmness
and elasticity of the horticultural crops studied were developed
using an adaptive neuro-fuzzy inference system for real time ap-
plications. For such real time applications, the study revealed that
0.5 s or less was required for the processing time to run the algo-
rithms including the first order statistics of the image histogram
(FOSH), grey level co-occurrence matrix (GLCM), local binary
pattern (LBP), wavelet and simultaneous autoregressive (SAR) sta-
tistical and texture-based techniques. Likewise 0.5 s or less was the
time required to run the Lorentzian Distribution (LD), Gompertz
Distribution (GD) and Farrell diffusion models. The models based



Table 1
A summary of applications of backscattering imaging for agricultural and food products.

Imaging
technique

Wavelength (nm) Material Calibration
model

Application Reference

LLBI 660 and 785 Banana SMLR Chilling injury in bananas Hashim et al.,
2013

LLBI 660 Apple, plum, tomato and
mushroom

ANFIS Firmness and elastic modulus of apple, plum, tomato
and mushroom

Mollazade et al.,
2013

MBI 532, 635, 650, 780, 808, 850,
1064

Banana Predicting pre-treatment effect on drying of banana
discs

Denes et al., 2013

LLBI 532, 660, 785, 830, 1060 Citrus Early detection of decay in citrus Lorente et al., 2013
HBI 400e1000 Banana MLR Determination of quality and maturity at three drying

temperatures
Rajkumar et al.,
2012

LLBI 532 and 635 Bell pepper NR Prediction of MC and colour Romano et al.,
2011a

LLBI 635 Apple (Gala) LR and PR Prediction of MC, SSC and hardness during drying Romano et al.,
2011b

LLBI 670 Banana Prediction of MC during drying Romano et al.,
2010

HBI 400e1000 Apple ANN Detecting chilling injury ElMasry et al.,
2009

LLBI 785 Apple (Pinova and Elstar) Ripeness detection during storage Baranyi et al., 2009
HBI 400e1000 Tomato Ripeness detection Qin and Lu 2008
LLBI 670 and 785 Apple (Idared and Golden

Delicious
Bruise detection Baranyai and Zude

2008
LLBI 680, 780, 880, 940 and 980 Apple (Elstar and Pinova PLSR, PCR and

SMLR
Prediction of firmness and SSC during ripening Qing et al., 2008

LLBI 670 Banana LR Prediction of MC during drying process Romano et al.,
2008

HBI 496e1036 Beef meat MLR Prediction of tenderness Cluff et al., 2008
LLBI 408 Apple (Golden delicious) ANN Prediction of skin and flesh colour, SSC, firmness and

TA after storage
Noh and Lu, 2007

HBI 530e900 Milk LR Prediction of fat content Qin and Lu, 2007
LLBI 650 Apple (Fuji and Gala) LR Ripeness detection during shelf life Tu et al., 2006
HBI 500e1000 Peach (Red Haven and Coral

Star
MLR Prediction of firmness during ripening Lu and Peng, 2006

HBI 530e950 Apple (Golden Delicious MLR Prediction of firmness and SSC after storage Lu et al., 2006
MBI 650, 680, 700, 740, 800, 820, 880,

910, 990
Apple (Red and Golden
Delicious)

MLR Prediction of firmness during ripening Peng and Lu, 2006

MBI 680, 880, 905, 940, 1060 Apple (Red Delicious) ANN Prediction of firmness and SSC after storage Lu 2004
LLBI 670 Tomato PR Maturity evaluation Tu et al., 2000

HBI, hyperspectral light backscattering imaging; MBI, multispectral light backscattering imaging; LLBI, laser light backscattering imaging; ANFIS, adaptive neuro fussy
inference system; PR, polynomial regression; ANN, artificial neural network; LR, linear regression; MLR, multiple linear regression; PCR, principal component regression; NR,
nonlinear regression; SMLR, stepwise multilinear regression; PLSR, partial least square regression; SSC, soluble solids content; TA, titratable acidity.
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on the fusion of selected feature sets of texture analysis and space
domain techniques managed to achieve a good prediction ability
for the mechanical properties with R values of 0.896, 0.919, 0.790
and 0.887 for mushroom, tomato, plum and apple respectively. The
combinations of space domain and texture-based features resulted
in improved prediction accuracy of the mechanical properties.

In addition, LLBI has been used to determine the optical prop-
erties of fruits and vegetables (Baranyai et al., 2009; Baranyai and
Zude, 2009; Do Trong et al., 2014). Optical properties have been
compared with maturity level and sugar content. Changes in the
optical properties of fruit tissue during the development and
ripening stages can better aid the grading process. Baranyai et al.
(2009) applied LLBI to determine the optical properties of apple
tissue in cold storage. In the study, two apple cultivars (‘Elstar’ and
‘Pinova’) at unripe, ripe and overripe stages were each kept in
separate chambers under a controlled atmosphere (2% CO2, 1.5%
O2). Radial averaging was used to compute the backscattering
profiles that were extracted from the captured backscattering im-
ages. The anisotropy factor (g), absorption coefficient (ma) and
scattering coefficient (ms) were estimated from the analysis. The
results indicated the total interaction coefficient (mt) (total distri-
bution of light comprising absorption and scattering) was affected
not only by flesh firmness but also by other fruit attributes. It also
revealed that the estimated values of the optical properties of apple
were strongly affected by storage time and apple cultivar.
3.2. Applications of multispectral light backscattering imaging
(MBI)

Similar to LLBI, the application of MBI has been conducted on
various types of agricultural produce in order to determine various
quality attributes in fruits such as apple, peach, etc. (Lle�o et al.,
2009; Lu, 2004; Peng and Lu, 2005, 2006, 2007). Lu (2004) exam-
ined the use of MBI to predict firmness and SSC in apples. In total,
about 550 apples were used in the study and spectral images of
apple samples were captured using five wavelength bands i.e. 680,
880, 905, 940 and 1060 nm. Prior to measurement, the samples
were stored for 5e6months in a controlled environment at 2 ± 1 �C
temperature and 93%e98% relative humidity to retain the pre-
storage quality of the fruit. The samples were later refrigerated at
5 �C for four weeks and then transferred to a holding area at room
temperature (24 �C) for a minimum of 15 h before the measure-
ments were carried out. The ratios of the scattering profiles of the
spectral images at each wavelength were used as input in back-
propagation neural network models employed in the study for
predicting the SSC and fruit firmness. The study found that four
wavelengths with three ratio combinations i.e. F1/F4, F2/F3 and F3/
F4 produced the best prediction of firmness with R being equal to
0.87 and a standard error of prediction of 5.8 N. On the other hand,
three wavelengths with two ratio combinations i.e. F2/F3 and F3/F4
were sufficient to predict the SSC values. The authors found that the
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neural network prediction model for firmness compared well with
other reported works from previous studies using NIR and other
laser imaging techniques, but SSC prediction was not as good as
other reported works using similar imaging techniques.

The application of MBI to predict drying parameters has been
tested on banana. For instance, D�enes et al. (2013) studied the in-
fluence of antioxidant solution, drying temperature and the drying
time of banana discs on MBI parameters. Laser diodes that emitted
light from 532 nm to 1064 nmwere used in this study. Banana discs
of 10 mm thickness were treated with different antioxidant solu-
tions of ascorbic acid to inhibit banana disc discolouration while
drying. The treated discs were subjected to 50 �C and 80 �C drying
temperatures and 6 h and 8 h drying time. Radial profiles were used
to evaluate the light penetration pattern. Backscattering parame-
ters of distance of inflection point (DIP), slope of logarithmic decay
(SLD) and FWHM were compared with a normalised difference
vegetation index (NDVI), which was used as a reference. The au-
thors concluded that backscattering profiles of 532, 635 and
650 nm sensitively responded to the adjusted drying parameters of
temperature and time, which resulted in less photon scattering
being observed by intensity decay for movement close to the
incident point. The result showed that the system can be used to
monitor changes in the parameters during drying.

3.3. Applications of hyperspectral light backscattering imaging

In addition to the application of LLBI and MBI in the determi-
nation of agricultural and food commodity quality attributes, HBI
has also found application in the determination of the quality at-
tributes of fruits and vegetables. HBI has been used to determine
quality attributes in apple, peach, cucumber, pear, kiwifruit, tomato
etc. (Lu and Peng, 2006; Lu et al., 2006; Noh and Lu, 2007; Qin and
Lu, 2008). For example, Qin and Lu (2008) employed a HBI system
to estimate the optical properties of selected fruits and vegetables.
In the study, a spatially resolved steady state diffuse reflectance
technique with a visible and short-wave near-infrared wavelength
between 500 and 1000 nmwas used. A HBI system using an in-line
scan mode was applied to capture spatially resolved diffuse
reflectance images from eight samples each of three cultivars of
apple (Golden Delicious, Red Delicious and Fuji) cucumber, pear,
peach, plum, kiwifruit, zucchini squash, and tomato at three
different stages of ripeness. An inverse algorithm for a diffusion
theory model was used to determine the absorption and reduced
scattering coefficients of the samples from the spatially resolved
scattering profiles. The authors observed that water and major
pigments such as chlorophylls, carotenoids or anthocyanins in the
samples had a significant effect on the spectra of the absorption
coefficient, while there was a decrease in the spectra of the reduced
scattering coefficient with increasingwavelength. Therewas awide
variation in the values of absorption and reduced scattering co-
efficients among the samples tested. Tomatoes at the three
different ripening stages (green, pink and red) showed large ab-
sorption spectra differences and the ratio of the absorption coeffi-
cient at 675 nm for chlorophyll to that at 535 nm for lycopene was
used to classify the samples into different stages of ripeness. It was
noted that major pigments of the plant tissue such as chlorophyll,
carotene and carotenoid had a significant effect on the penetration
depth of light.

HBI has also been used to detect defects in fruits such as apple
(ElMasry et al., 2009, 2008). For example, ElMasry et al. (2009)
applied HBI to detect chilling injury in ‘Red Delicious’ apples. In
the study, an established HBI system operating at wavelengths of
400e1000 nm was employed to capture, pre-process and extract
the spectral properties of ‘Red Delicious’ apples as shown in Fig. 4.
Sixty-four Red Delicious apples free from defects, bruises, disease
and contamination were picked for the experiment. A chilling
injury was induced in 32 apples by storing at �1 �C for 24 h. After
that they were removed from the cold storage and kept at room
temperature (20 ± 1 �C) for another 24 h to facilitate the proper
development of the chilling injury symptoms. The remaining 32
apples which served as control samples were kept at room tem-
perature (20 ± 1 �C). An artificial neural network (ANN) was used as
a calibration model for the classification and firmness prediction of
normal and injured Red Delicious apples. The work recorded 98.4%
classification accuracy in the detection of normal and injured ‘Red
Delicious’ apples.

4. Analysis of backscattering images

The most important step in the application of a backscattering
imaging system is to find the appropriate wavelength for assessing
the optical property of interest. The reason is that there are varia-
tions in the structures of the objects being investigated and these
variations correspond to different optical properties. Therefore a
specific wavelength is required to determine the selected proper-
ties. To overcome this, several researchers have recommended
several wavelength ranges. Some have suggested the appropriate
wavelengths for measurement of fruit quality were in the range of
visible light to NIR (400e1000). The 620, 880, 940 and 1010 nm
wavelengths have been used to determine the SSC of cherries, ap-
ples and apricots (Carlini et al., 2000; Qing et al., 2007; Ventura
et al., 1998). Other researchers have suggested 680, 860 and
800e1100 nm as appropriate wavelengths for the detection of
firmness in apples, kiwifruits and plums (McGlone et al., 1998;
Moons et al., 1998; Paz et al., 2008; Qing et al., 2007). Qing et al.
(2007) further suggested 910 nm as an appropriate wavelength to
determine moisture content.

In backscattering imaging, the beam size used in the imaging
system is of significant importance. Lu (2004) noted that although a
large beam size offers better light distribution, it may lead to
problems in scattering quantification as photons do not travel along
the same path lengths. For a smaller beam size, scattering quanti-
fication is straightforward but the efficiency of the lighting system
is greatly reduced, leading to a smaller scattering area due to the
detecting device receiving fewer photons. There is a need to care-
fully select the beam size in order to obtain an accurate result from
the image capturing device. The choice of beam size is also
important in order to reduce or avoid pixel saturation, which has a
direct correlation with scattering area.

Another important consideration in a backscattering imaging
system is the incident angle of the light beam. Various researchers
have used different incident angles in their work such as 21� (Lu,
2004) and 15� (Hashim et al., 2013; Mollazade et al., 2013). This
is to avoid oversaturation of the photons, and also to prevent direct
reflection back to the camera. The positioning of the incident angle
of the light beam allows for ease of processing of the images. When
the incident angle of the light beam is carefully selected, it aids the
image to be symmetrical about the incident point.

After image acquisition, the acquired images are segmented and
pre-processed to remove noise and all irrelevant information in the
raw data before being analysed using statistical analysis. Various
researchers have developed diverse algorithms to process back-
scattering images and a number ofmethods have been proposed for
describing the image texture (Zheng et al., 2006). These include
statistical, structural, model-based and transform-based texture
analysis as shown in Fig. 5. Haralick et al. (1973) reported that the
most frequently used statistical textural analysis technique is the
Grey-Level Co-Occurrence Matrix (GLCM), which is based on the
use of second order statistics of the grayscale image histograms.
The space-frequency decomposition ability has made the Gabor or



Fig. 4. Extraction of the fruit spectral signature: (a) selecting 550 nm image, (b) binarization (defining the AOI); (c) applying the mask; and (d) calculating the fruit spectral signature
using only those at the white pixels in the mask (ElMasry et al., 2009).

Fig. 5. Overview of texture analysis methods (Zheng et al., 2006).
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wavelet transform a preferred choice among transform-based
texture analysis techniques. The wavelet transform method has
been used both for feature extraction and texture characterisation.
It also has been used to address the problems of segmentation and
classification (Chang and Kuo, 1993; Laine and Fan, 1996; Unser,
1995).

Since the large dimensions of textural features are usually
extracted from backscattering profiles, it is very difficult to derive
any meaningful relationship from the extracted textural features
and the quality parameters that are intended to be evaluated. Thus,
the extracted features are not directly used to determine quality
parameters. The majority of the feature extraction methods
currently employed in light backscattering imaging tend to focus on
fitting mathematical functions or models to one-dimensional
scattering profiles. Subsequently, the parameters obtained from
these functions or models are used as features. Mollazade et al.
(2012) suggested that since laser light backscattering imaging
provides two-dimensional images with pixel intensity values of
different patterns, extracting texture features of such images could
result in a better prediction of the qualitative parameters of agri-
cultural and food commodities.

Although pre-processing is important in image processing, if not
properly done then this process offers uncertainties concerning the
accuracy of the results. For example, the techniques of radial and
profile averaging result in a profound reduction of the backscat-
tering data (Lu, 2004; Peng and Lu, 2006) while spectral averaging
over a sequential series of wavelengths increased processing time
(Mollazade et al., 2012). These could be limitations for a real-time
application. Also, there is considerable loss in image resolution
when the pixel binning technique is used. These highlighted re-
ductions in the data size of backscattered images may negatively
affect the final results of LLBI systems (Mollazade et al., 2012).

The success of any segmentation procedure is usually deter-
mined by correct pre-processing of the images (Blasco et al., 2007).
Lu (2004) suggested Principal Component Analysis (PCA) or Partial
Least Square regression (PLS) be used to pre-process the profile
data. The advantages of PLS are that it can remove noise from the
original data, reduce the dimensionality of the input data and
reduce the risk of overfitting based on the training data. Peng and
Lu (2006) adopted a filtering method to remove isolated spots on
the scattering profile data and the results showed better firmness
prediction with the best correlation, R ¼ 0.854 when 18% low
grayscale pixels were removed. The classical thresholding tech-
nique i.e. Bimodal and Otsu's thresholding methods are widely
used for image segmentation processing. Pedrycz et al. (1998) re-
ported that the performance of these methods is usually reduced in
images with unfavourably defined regions. Mollazade et al. (2012)
suggested the use of fuzzy set models as a way to incorporate the
uncertainty to obtain an improvement in the thresholding. The
fuzzy set method is a set theory that models reality when an
empirical validation is desired (Zimmermann, 1980). It is a
modelling, problem solving and data mining tool which has proven



Fig. 6. GaussianeLorentzian cross product distribution model for backscattering profiles (Lorente et al., 2013).
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to be superior to existing methods in many cases (Zimmermann,
2010).

The segmented backscattering images can be analysed using
different methods such as optical scattering (Cluff et al., 2008),
changes in light intensity (Hashim et al., 2013; Romano et al., 2011)
and radial averaging (Peng and Lu, 2006, 2008). These produce a
backscattering profile which can be fitted to mathematical models
such as LD (Eq. (3)), MLD (Eq. (4)) and GL (Eq. (5)) functions.

Iwi ¼
awi

1þ
�

x
bwi

�2 (3)

where I is the light intensity in the CCD count, x is the scattering
distance measured from the beam incident centre in mm, a is peak
value of the scattering profile at x¼ 0 in the CCD count value inmm,
b is the full width of the scattering profile at one half of the peak
value in mm and wi is a specific wavelength with i ¼ 1, 2, 3, … N,
where N is the total number of wavelengths.

R ¼ b

ð1þ x=cÞd
(4)

where R is aModified Lorentzian Distribution function, b is the peak
value of the profile, c is the FWHM, d is the slope around the FWHM
and x is the scattering distance.

IðxÞ ¼ aþ b�
1þ e

�
x�c
d2

�
expðð1� eÞ=2Þðx� cÞ=d

�2i (5)

where I is the light intensity of each circular band after radial
averaging, x is the scattering distance expressed as the number of
pixels, a is the asymptotic value of the light intensity when x ap-
proaches infinity, b is the peak value of the estimated light intensity
at the centre, c is the centre parameter, d is the full scattering width
that produces the half maximum peak value, and e relates to the
shape of the backscattering images.

An example of a GL cross product distribution of backscattering
profiles is as shown in Fig. 6. From the fitted profile, other param-
eters can be obtained such as the Inflection Point (IP) and Satura-
tion Radius (Rsat). The FWHM, IP and Rsat were used to assess the
level of chilling injury in banana (Hashim et al., 2013), tenderness in
beef steak (Cluff et al., 2008), tissue changes in kiwifruit, bananas
and apples (Romano et al., 2008).

In terms of statistical analysis, most researchers have developed
calibration models to predict the quality of produce. The calibration
models that have been used in backscattering imaging were
developed using multivariate analysis such as multi-regression,
ANN, linear discriminant analysis (LDA), PLS etc. Multi-regression
analysis has been used to predict chilling injury in bananas
(Hashim et al., 2013), firmness (Peng and Lu, 2006) and SSC in
apples (Peng and Lu, 2008) while ANN has been used to develop
calibration models to predict the sugar content in potatoes (Rady
et al., 2015), detect chilling injury in apples (ElMasry et al., 2009),
predict apple firmness and SSC (Lu, 2004) and determine the me-
chanical properties of horticultural crops (Mollazade et al., 2013).
LDA has successfully classified banana slices according to drying
time (Romano et al., 2008) and detected decay in citrus (Lorente
et al., 2013). Further, PLS has been used to detect bruises
(ElMasry et al., 2008) and predict the maturity of freshly harvested
apples (Zude-Sasse et al., 2002). All these different analysis ap-
proaches show significant results and seemingly served as a bridge
between the extracted features and the corresponding quality at-
tributes (physical, physicochemical or mechanical properties).
5. Conclusion

In this review an attempt has been made to present an overview
of various applications of hyperspectral, multispectral and laser
light backscattering imaging of agricultural produce by numerous
researchers who have worked on the subject matter. The review
has highlighted the types of crops that have been measured, the
selection of laser light wavelengths, the parameters used for pre-
diction and the methods used for developing the calibration and
prediction models. Much work has been done in the application of
backscattering imaging to detect the internal characteristics of
agricultural and food products such as moisture content, firmness,
SSC, acidity and the presence of external defects. However, there
are still some challenges which must be overcome for the effective
deployment of the system. The main challenge is the ability to
achieve real time and continuous assessment. Most published
works have been conducted based on batch assessment which does
not represent the real online sorting and grading situation which is
necessary to evaluate a high number of products per unit time.

More work is needed in the area of image processing algorithms
in order to improve processing and analysis time per image.
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Nevertheless, backscattering imaging demonstrates a high poten-
tial to provide a non-destructive low-cost technology with rapid
evaluation for predicting the quality of agricultural and food com-
modities. All the fundamental studies have shown promising re-
sults indicating the effectiveness of the method as a new tool for
assessment of quality.
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